If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-5y-24=0
a = 6; b = -5; c = -24;
Δ = b2-4ac
Δ = -52-4·6·(-24)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{601}}{2*6}=\frac{5-\sqrt{601}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{601}}{2*6}=\frac{5+\sqrt{601}}{12} $
| 12−4y=2y+9 | | z/3=4.5 | | -53x/4=4 | | 6x-3=-2x+6 | | (3x+5)=(x+1) | | 6y-10=50 | | 6n+3=23 | | 1/2(x+1/2)=-3/2x+9/4 | | 6x-35=19-3x | | 8x+4=3(x-1)7 | | 16=8(x+) | | 3x+15=14-x | | 9x+33=6 | | c+3c-4c=0 | | 5+2x=5+2x | | (3x+5)/5–(5x-7)/6=(x-2)/3 | | 2+(3x-5)-11=8 | | 4(8x-4)=3x-5 | | 5(4x-2)=7x+4 | | Yx1.3=1.56 | | 3x÷4=2/5 | | b.2+3 | | (5x-7)-(2x+3)/6x+11=8/3 | | 4-2/3^x=x-6/5 | | 6x+1=2(2x+3) | | (2+3j)-(3-4j)=0 | | 6x+3=2x=15 | | 2(x+3)=16* | | 3(3x-2)=6x+12 | | 7y-8=13y | | 5x+2=10x–1 | | (1/2)x-27=2x |